- 新闻中心
- news Center
- 联系我们
- Contact Us
苏州纳朴材料科技有限公司
- 联系人:
李女士
- Contact:
Ms. Li
- 手机:
18970647474(同微信)
- Mobile Phone:
+86-18970647474
(WeChat ID)
- 邮箱:
- E-mail:
2497636860@qq.com
- 技术联系人:
徐先生
- Technical Contact:
Mr. Xu
- 手机:
15607960267(同微信)
- Mobile Phone:
+86-15607960267
(WeChat ID)
- 邮箱:
- E-mail:
nanopure@qq.com
- 办公室地址:
苏州市相城区聚茂街185号D栋11层1102
- Office Address:
D-1102, 185, Jumao Street, Xiangcheng, Suzhou, Jiansu, China
- 工厂地址:
江西省吉安市井冈山经济技术开发区
- Plant Address:
Jinggangshan Economic Development Zone, Ji' an 343000, Jiangxi, China
碳化硅的晶形结构及粉体制备
信息来源:本站 | 发布日期: 2020-07-10 09:05:22 | 浏览量:1372680
碳化硅的晶形结构及粉体制备文章整理苏州纳朴材料科技有限公司碳化硅(SiC)作为一种重要的结构陶瓷材料,凭借其优异的高温力学性能、高硬度、高弹性模量、高耐磨性、高导热性、耐腐蚀性等性能,不仅应用于高温窑具、燃烧喷嘴、热交换器、密封环、滑动轴承等传统工业领域…
碳化硅的晶形结构及粉体制备
文章整理苏州纳朴材料科技有限公司
碳化硅(SiC)作为一种重要的结构陶瓷材料,凭借其优异的高温力学性能、高硬度、高弹性模量、高耐磨性、高导热性、耐腐蚀性等性能,不仅应用于高温窑具、燃烧喷嘴、热交换器、密封环、滑动轴承等传统工业领域,还可作为防弹装甲材料、空间反射镜、半导体晶圆制备中夹具材料及核燃料包壳材料。
碳化硅优异的性能源自于其晶体结构和Si-C键的高度共价键特性(~88%)。碳化硅主要有两种晶型,即低温稳定型的立方晶系β-SiC和高温稳定型的六方晶系α-SiC,如图1所示。β-SiC为面心立方(fcc)闪锌矿结构,围绕每个原子有4个等距离的异类原子,它们排在正四面体的顶角上;α-SiC为纤锌矿结构,其中a原子作六方密堆积,b原子填充在a原子构成的四面体空隙中。这两种晶体结构中SiC的基本单元都是互相穿插的[SiC4]和[CSi4]四面体,通过四面体的平行结合或者反平行结合,四面体共边形成平面层,并以顶点与下一叠层四面体相连形成三维结构。这种共价键四面体单元结构特点决定了SiC的晶体结构对称性较大,呈现出较强的各向异性,这使得其原子滑移面减少,不易引起变形,即使在高温下也有很高的强度。另外,由于结构单元层具有不同的堆垛方式,在α-SiC中衍生出不同的变体,其中最主要的是4H、6H、15R等,表1列出了SiC多型体的晶格常数。
尽管SiC存在多种多型体,且晶格常数各不相同,但其密度均很接近。β-SiC的密度为3.215g/cm3,各种α-SiC变体的密度基本相同,为3.217g/cm3。β-SiC于2100℃稳定性较好,高于2100℃时β-SiC开始转变为α-SiC,但转变速度很慢,2300-2400℃时转变迅速。β→α转变为单向不可逆,2000℃以下合成的SiC主要为β-SiC;2200℃以上合成的则主要为α-SiC,而且以6H为主。15R变体在热力学上不太稳定,为低温下发生3C→6H转化时生成的中间相,高温下不存在。
目前较为成熟的工业化制备碳化硅粉末的方法有:
(1) Acheson法:将高纯度石英砂或粉碎后的石英矿,与石油焦炭、石墨或无烟煤细分均匀混合,通过石墨电极产生的高温加热至2000℃以上使其发生反应合成α-SiC粉体;
(2) 二氧化硅的低温碳热还原法:将二氧化硅细粉与碳粉混合后,在1500~1800℃进行碳热还原反应,获得纯度较高的β-SiC粉末,此方法类似于Acheson法,其差别在于合成温度较低,产生的晶体结构是β型,但还存在残留的未反应的碳和二氧化硅,所以需要有效的脱硅脱碳处理;
(3) 硅碳直接反应法:金属硅粉与碳粉直接反应,在1000~1400℃生成高纯β-SiC粉。α-SiC粉体是目前碳化硅陶瓷产品的主要原料,而具有金刚石结构的β-SiC多用于制备精密研磨抛光材料。
-
2026-02-02 08:48:52
在功率半导体、新能源汽车及智能电网飞速发展的今天,热管理已成为制约电子设备性能与寿命的“卡脖子”环节。对于高电压、大功率应用场景而言,绝缘与导…
-
2026-01-26 09:06:45
近年来,六方氮化硼(h-BN)及其纳米材料被广泛用于与高分子复合制备导热复合材料。一个基本的目标是不断提高复合物的热导率,然而,h-BN的热导率究竟是多…
-
2026-01-19 08:37:35
当六方氮化硼(h-BN)与聚合物被制备成复合材料时,大量的界面是影响复合物热导率的核心因素之一,主要包括h-BN之间,以及h-BN与聚合物的界面。为降低界…
-
2026-01-04 08:09:39
先进材料和电子器件等交叉学科的快速发展,对兼具热管理和阻燃性能的多功能复合材料提出了严峻挑战。福州大学等研究团队提出了一种由氮化硼导热骨架和苯…
-
2025-12-29 08:23:30
研究背景近年来,六方氮化硼(hBN)作为可光学调控自旋的宿主材料引起了广泛关注,这主要归功于其层状范德瓦尔斯结构所提供的独特属性,使其有别于钻石…
-
2025-12-26 13:08:13
论文题目:A spherical h-BN agglomerates-filled composite with high thermal conductivity and low dielectric loss 发表期刊:Ceramics Internatio…