- 新闻中心
- news Center
- 联系我们
- Contact Us
苏州纳朴材料科技有限公司
- 联系人:
李女士
- Contact:
Ms. Li
- 手机:
18970647474(同微信)
- Mobile Phone:
+86-18970647474
(WeChat ID)
- 邮箱:
- E-mail:
2497636860@qq.com
- 技术联系人:
徐先生
- Technical Contact:
Mr. Xu
- 手机:
15607960267(同微信)
- Mobile Phone:
+86-15607960267
(WeChat ID)
- 邮箱:
- E-mail:
nanopure@qq.com
- 办公室地址:
苏州市相城区聚茂街185号D栋11层1102
- Office Address:
D-1102, 185, Jumao Street, Xiangcheng, Suzhou, Jiansu, China
- 工厂地址:
江西省吉安市井冈山经济技术开发区
- Plant Address:
Jinggangshan Economic Development Zone, Ji' an 343000, Jiangxi, China
比传统器件强 1000 倍!西电 hBN 研究刷新半导体表现
信息来源:本站 | 发布日期: 2025-09-23 08:48:43 | 浏览量:37697
^西安电子科技大学报道了利用超宽禁带六方氮化硼(hexagonal boron nitride, hBN,一种具有六边形层状结构的二维材料,类似石墨烯,层间通过弱范德华力结合)改善铝镓氮(aluminium gallium nitride, AlGaN)高电子迁移率晶体管(high-electron-mobility transistors,…
西安电子科技大学的研究团队表示,近年来利用二维材料技术合成氮化镓(gallium nitride, GaN)的研究备受关注,因为二维材料与氮化镓之间的弱结合能有效减少异质外延过程中晶格失配导致的应力,从而大幅降低位错密度,改善材料质量。研究人员认为,这种技术在高功率电子系统中具有应用潜力。
图 1
研究中,HEMTs 的外延材料在蓝宝石衬底上制备,部分样品添加了 BN 缓冲层(图 1)。BN 缓冲层先通过化学气相沉积(chemical vapor deposition, CVD)在铜箔上生长,再借助透明聚甲基丙烯酸甲酯(poly (methyl methacrylate), PMMA)热塑性材料转移到覆盖有 30nm 溅射氮化铝(aluminium nitride, AlN)层的蓝宝石衬底上。
研究人员称,hBN 缓冲层的加入显著提升了器件性能。与没有 hBN 缓冲层的样品相比,引入 hBN 缓冲层后,二维电子气(2D electron gas, 2DEG,异质结界面处形成的高迁移率电子层)面密度从 5.8×10¹³/cm² 增至 1.24×10¹⁴/cm²,电子迁移率从 1726cm²/V・s 提高到 2091cm²/V・s,方块电阻(Rsh)从 430Ω/□降至 290Ω/□。团队将这些改善归因于 BN 缓冲层的 “位错过滤” 作用和对晶体质量的提升,优化了二维电子气沟道的传输特性。器件的其他材料层包括 200nm 氮化铝、1.2μm 氮化镓缓冲层、300nm 未掺杂氮化镓以及 25nm Al₀.₂₅Ga₀.₇₅N 势垒层,均通过金属有机化学气相沉积制备。
在去除用于保护 AlGaN 势垒免受氧化等污染的氮化镓盖帽层后,研究人员添加了一层低成本的 8nm 溅射 BN 作为栅介质。选择这一厚度是基于模拟结果:开关电流比在 7nm 时达到^值,而考虑到沉积方法以及模拟中 7nm 以上开关比的微小下降,最终确定为 8nm。溅射源为 BN,样品在溅射前经过退火处理。
研究团队制备了四种 HEMTs,涵盖有无 BN 缓冲层和栅介质的所有组合。器件的栅长为 150nm,栅源间距 / 栅漏间距分别为 850nm/1μm,栅宽为 50μm。
图 2
同时采用 BN 缓冲层和栅介质的 HEMT(样品 A)性能优于其他样品(图 2)。其开关电流比约为 10¹¹,比完全不使用 BN 的样品 D 高出约三个数量级。另外两种样品 B 和 C 则分别仅使用 BN 作为缓冲层和栅介质。
使用 BN 栅介质的器件阈值电压更负(约 - 0.5V),研究团队认为这是由于 BN 介质与 AlGaN 界面存在正固定电荷,导致平带电压(VFB)下移,使阈值电压(Vth)更负。由于所有器件在栅压为 0V 时均为 “常开” 状态,这在许多功率应用中并不理想 ——“常关”(增强型)器件在低功耗、安全可靠性等方面更具优势。
样品 A 至 D 的^饱和输出电流密度分别为 1550mA/mm、1370mA/mm、1039mA/mm 和 975mA/mm。研究人员解释,^饱和输出电流密度的提升可能与 hBN 缓冲层带来的晶体质量改善、位错密度降低和二维电子气增强有关。此外,BN 栅介质的引入进一步改善了界面质量,降低了表面态密度(Dit),减少了界面电荷,从而增强了栅极对沟道载流子的控制能力,改善了载流子传输,最终提高了器件的导电性。
在 5V 漏偏压下,样品 A 的峰值跨导为 360mS/mm,比样品 D(251mS/mm)高 30%。BN 缓冲层对跨导的改善贡献更大,因其提高了沟道的导电性。
在脉冲模式下,样品 A 的电流崩塌率为 6%。研究团队表示,BN/AlGaN 界面通过减少开关过程中陷阱占据调制,有效抑制了陷阱辅助的载流子散射,缓解了动态退化 —— 传统 GaN HEMTs 的电流崩塌率通常在 30% 左右。
图 3
与其他研究相比(图 3),西安电子科技大学的这项工作在实现^开关电流比的同时,还保持了良好的^饱和输出电流密度。
-
2025-11-17 08:31:48
为了解决高集成度电子器件中关键的热管理挑战,华南理工大学李金鹏副教授等研究团队制备一种基于导热纤维骨架的芳纶绝缘纸,该骨架构建了高效的传热网络…
-
2025-11-11 10:29:59
研究背景在纳米光子学领域,范德华材料中的极化激元因其高局域性和长传播长度备受关注。六方氮化硼作为天然双曲材料,在其剩余射线带内支持体积局域的双…
-
2025-11-11 10:26:21
1背景介绍六方氮化硼(h-BN)纤维因兼具轻质、抗氧化、高强度、电绝缘等特性,在陆、空、天运输及极端环境领域需求迫切,其还具有超高强度重量比、低密…
-
2025-11-03 08:18:30
研究背景随着半导体技术遵循摩尔定律的持续进步,集成电路正朝着高度集成化、微型化、高频操作和高布线密度的方向快速发展,这推动了人工智能、物联网和…
-
2025-11-03 08:14:12
近年来,六方氮化硼(h-BN)及其纳米材料被广泛用于与高分子复合制备导热复合材料。一个基本的目标是不断提高复合物的热导率,然而,h-BN的热导率究竟是多…
-
2025-10-27 08:59:28
高质量六方氮化硼(hBN)单晶因具有优异的物理化学特性,包括原子级平坦表面、宽带隙(~ 5.9 eV)、高绝缘、高面内热导率以及化学惰性等,被作为衬底和…