- 新闻中心
- news Center
- 联系我们
- Contact Us
苏州纳朴材料科技有限公司
- 联系人:
李女士
- Contact:
Ms. Li
- 手机:
18970647474(同微信)
- Mobile Phone:
+86-18970647474
(WeChat ID)
- 邮箱:
- E-mail:
2497636860@qq.com
- 技术联系人:
徐先生
- Technical Contact:
Mr. Xu
- 手机:
15607960267(同微信)
- Mobile Phone:
+86-15607960267
(WeChat ID)
- 邮箱:
- E-mail:
nanopure@qq.com
- 办公室地址:
苏州市相城区聚茂街185号D栋11层1102
- Office Address:
D-1102, 185, Jumao Street, Xiangcheng, Suzhou, Jiansu, China
- 工厂地址:
江西省吉安市井冈山经济技术开发区
- Plant Address:
Jinggangshan Economic Development Zone, Ji' an 343000, Jiangxi, China
我国科研团队运用AI设计出石墨烯/氮化硼复合二维材料
信息来源:本站 | 发布日期: 2021-05-06 08:47:12 | 浏览量:1215664
近日,从杭州电子科技大学获悉,该校机械工程学院董源教授研究团队将人工智能、深度学习、对抗生成技术与新材料的研发相结合,研究出针对石墨烯/氮化硼复合二维材料的人工智能系统。传统的材料学硏究中,新材料需要经历理论发现、实验室制备、工程化制造和实际应用等阶段…
近日,从杭州电子科技大学获悉,该校机械工程学院董源教授研究团队将人工智能、深度学习、对抗生成技术与新材料的研发相结合,研究出针对石墨烯/氮化硼复合二维材料的人工智能系统。
传统的材料学硏究中,新材料需要经历理论发现、实验室制备、工程化制造和实际应用等阶段,这一过程至少需要20至30年,造成材料科研“耗时耗力”。将人工智能应用到新材料研发中,是解决目前材料研发周期过长、代价过高的一种新尝试。
董源研究团队采用大规模高通量计算收集了大量的结构-带隙之间的关联数据,作为人工智能的学习数据集。他们构建了数套深度卷积神经网络,可以学习已有的结构-带隙数据,精确预测不在数据集之中的任意新型结构的带隙,精确度可高达95%。
“这一类材料的带隙可以在导体与宽禁带半导体之间广泛可调,并且高度依赖原子的空间排布,在高性能存储、光电器件中具有重要应用潜力。”董源指出。
在进一步研究中,董源团队希望人工智能能够承担起一位材料科学家的角色,也就是可以根据用户需求主动设计材料。
“我们采用了近年来备受关注的对抗生成网络(GAN)来实现这一目的。”董源说。通过将深度卷积网络中的“隐藏神经层”与对抗生成网络中的“判别器”嵌合在一起,他们所设计的“条件生成对抗网络”可以做到根据用户对带隙的需求,自动生成新的石墨烯/氮化硼材料结构,且准确度依然可以达到90%左右。
董源团队还通过对隐藏神经层进行数据降维,观测到条件生成对抗网络跟踪材料结构与物性之间耦合关系的过程,对人工智能在材料科学应用中的可解释性做出了部分阐述。
日前,浙江省发布了《浙江省新材料产业发展“十四五”规划》,明确提出力争到2025年,初步建成全球有重要影响力的新材料产业高地。
“人工智能加速新材料研发这一领域的进展是激动人心的,迫切需要材料领域、信息科学领域的科学家以及材料产业专家精诚合作、紧密团结来推动它的发展。”董源表示。
-
2025-06-30 10:45:47
揭示室温下碳化硼晶体的高延展性【背景和问题】延展性是材料在断裂前能够承受显著塑性变形的能力,对于防止材料的灾难性断裂至关重要。然而,由于共价键…
-
2025-06-23 09:21:42
研究背景固态单光子发射源(SPEs)是推动量子技术发展的核心元件,在安全通信、量子优势计算及精密测量等领域具有不可替代的作用。六方氮化硼(h-BN)作…
-
2025-06-16 14:00:41
01背景介绍随着无线充电系统、5G通信技术、新能源汽车和人工智能系统的飞速发展,电子设备的散热需求日益增长,对高性能热管理材料的要求也愈发严苛。六…
-
2025-06-16 13:58:30
摘要:固态电解质因有望提升能量密度并通过去除易挥发液态电解质提高安全性,在锂离子电池领域备受关注。然而,现有材料常因性能不足或加工成本高而难以…
-
2025-06-09 08:43:50
一、研究背景六方氮化硼(h-BN)作为一种新型二维材料,因其卓越的热导率(350-600 W m⁻ K⁻)、化学稳定性和机械强度,已成为热界面材料(TIMs)领域…
-
2025-06-04 15:01:21
基于范德华Van der Waals (vdW) 材料的量子平台,可以设计具有混合和独特性质的新型异质结构,已被用作非线性光学、广谱可调性以及强光-物质耦合的超表…