- 新闻中心
- news Center
- 联系我们
- Contact Us
苏州纳朴材料科技有限公司
- 联系人:
李女士
- Contact:
Ms. Li
- 手机:
18970647474(同微信)
- Mobile Phone:
+86-18970647474
(WeChat ID)
- 邮箱:
- E-mail:
2497636860@qq.com
- 技术联系人:
徐先生
- Technical Contact:
Mr. Xu
- 手机:
15607960267(同微信)
- Mobile Phone:
+86-15607960267
(WeChat ID)
- 邮箱:
- E-mail:
nanopure@qq.com
- 办公室地址:
苏州市相城区聚茂街185号D栋11层1102
- Office Address:
D-1102, 185, Jumao Street, Xiangcheng, Suzhou, Jiansu, China
- 工厂地址:
江西省吉安市井冈山经济技术开发区
- Plant Address:
Jinggangshan Economic Development Zone, Ji' an 343000, Jiangxi, China
苏州纳米所关于Ni(111)表面上六方氮化硼/石墨烯平面内异质结生长过程的动态观测
信息来源:本站 | 发布日期: 2020-09-16 08:50:41 | 浏览量:1215938
苏州纳米所关于Ni(111)表面上六方氮化硼/石墨烯平面内异质结生长过程的动态观测面内二维异质结构能够整合不同二维材料的优点,拓展其在光学、电学器件领域内的应用,然而外延异质结构的可控制备和规模化生产,尤其是微观构建机理仍有待进一步研究。包信和教授和崔义研究员…
苏州纳米所关于Ni(111)表面上六方氮化硼/石墨烯平面内异质结生长过程的动态观测
面内二维异质结构能够整合不同二维材料的优点,拓展其在光学、电学器件领域内的应用,然而外延异质结构的可控制备和规模化生产,尤其是微观构建机理仍有待进一步研究。包信和教授和崔义研究员以Ni(111)表面上的化学气相沉积方法直接外延生长六方氮化硼/石墨烯面内异质结构为主线,借助表面原位动态成像技术,系统的研究了六方氮化硼作为成核模板在构建外延异质结构中的作用。研究发现,当六方氮化硼的生长顺序先于石墨烯时,石墨烯倾向于沿着外延六方氮化硼边界生长并形成外延石墨烯,进而拼接成单一取向的外延异质结构。当石墨烯先成核时,由于Ni(111)基底中的近表层碳物种削弱了石墨烯/Ni(111)界面相互作用,导致非外延石墨烯产生。以此为模板继续生长六方氮化硼所构建的异质结构也是非外延的,将难以获得高质量的二维异质结材料。此外,该研究还揭示了六方氮化硼在Ni(111)表面上的生长动力学遵循表面扩散控制机理(Diffusion-limited Aggregation, DLA)而不是边界反应控制机理(Reaction-limited Aggregation)。这一研究加深了对面内二维异质结构的外延特性调控以及二维材料在金属表面生长动力学的理解。此项研究结果以封面文章的形式发表在Nano Research期刊上(Dynamic observation of in-plane h-BN/graphene heterostructures growth on Ni(111). Nano Research (2020):1-6.)
此项工作主要是在中国科学院苏州纳米技术与纳米仿生研究所的纳米真空互联实验站(Nano-X)中完成的,Nano-X是目前世界上最大的集材料制备、分析测试、器件工艺于一体的真空互联设施,目标是建设成为国际领先的大科学用户装置。该平台具有完善的表界面分析工具,且通过超高真空管道互联互通,可实现样品免受外界污染的条件下传递到各个分析表征设备:极端条件(ULT-STM, 4P-STM) ;气氛可控(NAP-STM, NAP-XPS, SNOM);表界面谱学(XPS/UPS, TOF-SIMS);表界面成像(XPS-mapping,SEM, PEEM,LEEM, STM, AFM, SNOM,SIMS-mapping);光谱分析(Raman, PL)。平台可满足以下检测分析要求:(1)多尺度(从宏观到介观微观)下的材料表面形貌、成分的表征;(2)多维度(从二维到三维)下的元素分布。
-
2025-06-30 10:45:47
揭示室温下碳化硼晶体的高延展性【背景和问题】延展性是材料在断裂前能够承受显著塑性变形的能力,对于防止材料的灾难性断裂至关重要。然而,由于共价键…
-
2025-06-23 09:21:42
研究背景固态单光子发射源(SPEs)是推动量子技术发展的核心元件,在安全通信、量子优势计算及精密测量等领域具有不可替代的作用。六方氮化硼(h-BN)作…
-
2025-06-16 14:00:41
01背景介绍随着无线充电系统、5G通信技术、新能源汽车和人工智能系统的飞速发展,电子设备的散热需求日益增长,对高性能热管理材料的要求也愈发严苛。六…
-
2025-06-16 13:58:30
摘要:固态电解质因有望提升能量密度并通过去除易挥发液态电解质提高安全性,在锂离子电池领域备受关注。然而,现有材料常因性能不足或加工成本高而难以…
-
2025-06-09 08:43:50
一、研究背景六方氮化硼(h-BN)作为一种新型二维材料,因其卓越的热导率(350-600 W m⁻ K⁻)、化学稳定性和机械强度,已成为热界面材料(TIMs)领域…
-
2025-06-04 15:01:21
基于范德华Van der Waals (vdW) 材料的量子平台,可以设计具有混合和独特性质的新型异质结构,已被用作非线性光学、广谱可调性以及强光-物质耦合的超表…