- 新闻中心
- news Center
- 联系我们
- Contact Us
苏州纳朴材料科技有限公司
- 联系人:
李女士
- Contact:
Ms. Li
- 手机:
18970647474(同微信)
- Mobile Phone:
+86-18970647474
(WeChat ID)
- 邮箱:
- E-mail:
2497636860@qq.com
- 技术联系人:
徐先生
- Technical Contact:
Mr. Xu
- 手机:
15607960267(同微信)
- Mobile Phone:
+86-15607960267
(WeChat ID)
- 邮箱:
- E-mail:
nanopure@qq.com
- 办公室地址:
苏州市相城区聚茂街185号D栋11层1102
- Office Address:
D-1102, 185, Jumao Street, Xiangcheng, Suzhou, Jiansu, China
- 工厂地址:
江西省吉安市井冈山经济技术开发区
- Plant Address:
Jinggangshan Economic Development Zone, Ji' an 343000, Jiangxi, China
石墨烯+六方氮化硼=新的晶体管
信息来源:本站 | 发布日期: 2017-12-12 16:17:22 | 浏览量:1185157
石墨烯(Graphene)自十几年前诞生以来就一直让科学家们着迷。这种仅仅一个原子厚度的碳元素材料拥有出色的电子特性、强度、超轻重量,用途也不断拓宽,但是如何为其植入能隙(band gap/半导体或是绝缘体的价带顶端至传导带底端的能量差距),从而制造晶体管和其它电子设备,…
现在,麻省理工学院(MIT)的研究人员们在这方面取得了重大突破,甚至有望改变石墨烯物理学的一些理论预测。他们引入了另一种单原子厚度、属性和石墨烯类似的材料六方氮化硼(hexagonal boron nitride),并将一层石墨烯置于其上,最终得到的混合材料既有石墨烯的导电特性,还终于具备了建造晶体管所必需的能隙。
MIT物理系助教Pablo Jarillo-Herrero评论说:“通过综合两种材料,我们得到了属性异于二者的混合材料。石墨烯是极好的导体,六方氮化硼则是很好的绝缘体,能够阻挡电子流通。将它们放在一起,我们就得到了高质量的半导体。”
但整个过程显然不是1+1=2那么简单。研究人员必须几乎完美地将两种材料的原子框架对齐排列。它俩都有六边形结构,尺寸(晶格常数)几乎一样,但六方氮化硼里的大了1.8%,所以从细处看两种原子框架可以完美拼接在一起,从大尺度上看仍然会有些参差不齐。
目前对此还没有完美的解决方法,研究人员说只能依赖于获得角对齐,但总有大约1/15的几率出错。
MIT物理系教授Ray Ashoori表示:“所得半导体最惊人的是,只需略微调整一层材料和其它层的角度,就可以调整最终材料的属性,从而获得拥有各种不同电子属性的材料。”
在此之前,还曾有人通过将石墨烯层切割成细条来使之变成半导体,但这样会大幅削弱其电气属性。新的方法不会出现这种损失,只是目前产生的能隙还达不到实用水平,需要进一步改进才有望成为制造晶体管的新材料。
此外,MIT团队还在新材料中发现了一种有趣的物理现象:将其暴露在磁场中时,就会呈现分形特质,也就是所谓的“霍夫施塔特蝴蝶能谱”,这种几十年前理论预言的现象一度被认为是不可能存在的。
-
2025-05-05 09:59:41
氮化硼材料的高导热+强绝缘,完美适配5G射频芯片、新能源电池、半导体封装等高功率场景,是高性能绝缘导热材料的首选,为高功率电子设备热管理提供新的…
-
2025-04-29 08:07:16
高分子聚合物材料具有易加工成型、低密度、耐腐蚀、耐热性、低介电常数及优异的力学性能,使其广泛应用到电子设备、航空航天等领域。其中,大部分高分子…
-
2025-04-21 08:36:03
全文速览六方氮化硼(hBN)因其含有多种室温下存在的高亮度单光子而备受关注。然而,由于发射光谱的不确定性以及缺乏关于原子缺陷结构的信息,对于探索…
-
2025-04-14 08:41:20
美国范德堡大学Piran R. Kidambi发表了题为“Scalable Bottom-Up Synthesis of Nanoporous Hexagonal Boron Nitride (h‑BN) for Large-Area Atomicall…
-
2025-04-06 10:11:54
应对空气污染与全球变暖,已成为全球关注的焦点。解决这一问题,关键在于控制传统化石能源的使用,并积极开发可再生的清洁能源。太阳能、水能、风能及地…
-
2025-03-28 08:15:47
增材制造(AM)技术以其可设计性强、近净成型等优点,在非连续增强钛基复合材料(DRTMCs)等金属基复合材料领域引起了广泛关注。金属AM技术主要分为粉床熔融…