- 新闻中心
- news Center
- 联系我们
- Contact Us
苏州纳朴材料科技有限公司
- 联系人:
李女士
- Contact:
Ms. Li
- 手机:
18970647474(同微信)
- Mobile Phone:
+86-18970647474
(WeChat ID)
- 邮箱:
- E-mail:
2497636860@qq.com
- 技术联系人:
徐先生
- Technical Contact:
Mr. Xu
- 手机:
15607960267(同微信)
- Mobile Phone:
+86-15607960267
(WeChat ID)
- 邮箱:
- E-mail:
nanopure@qq.com
- 办公室地址:
苏州市相城区聚茂街185号D栋11层1102
- Office Address:
D-1102, 185, Jumao Street, Xiangcheng, Suzhou, Jiansu, China
- 工厂地址:
江西省吉安市井冈山经济技术开发区
- Plant Address:
Jinggangshan Economic Development Zone, Ji' an 343000, Jiangxi, China
西安交大科研人员制备出全球首款六方氮化硼同质结深紫外LED芯片
信息来源:本站 | 发布日期: 2025-03-19 10:26:51 | 浏览量:33032
六方氮化硼(hBN)是重要的超宽禁带半导体材料,具有类石墨烯层状结构和独特的光电特性,在深紫外发光器件和探测器领域具有重要的应用。早在2007年,科研人员就开展了对hBN材料激子发光特性的实验研究与理论分析,相关成果发表在Science期刊上(Science, 2007, 317: 932-…
六方氮化硼(hBN)是重要的超宽禁带半导体材料,具有类石墨烯层状结构和独特的光电特性,在深紫外发光器件和探测器领域具有重要的应用。早在2007年,科研人员就开展了对hBN材料激子发光特性的实验研究与理论分析,相关成果发表在Science期刊上(Science, 2007, 317: 932-934),并通过阴极发光(CL)测试首次证明了hBN材料具有深紫外发光特性。随着研究的发展,科研人员通过光致发光(PL)技术确定了hBN材料具有复杂的缺陷发光特性,且堆叠层错是缺陷发光的最主要诱因(ACS Photonics, 2014, 1(9): 857-862.)。基于hBN材料展现出的优异紫外发光特性,近几年应用剥离单晶hBN与石墨烯材料结合,研制出了深紫外发光器件(Nature Communications, 2021, 12(1): 7134; Advanced Materials, 2022, 34(21): 2201387.)。然而,能制备出PN结型高效率半导体发光器件一直是本领域追求的目标,hBN薄膜的n/p掺杂问题(尤其是n型掺杂)一直是重大的科学和技术难题。
图1.(a)hBN薄膜和S掺杂hBN薄膜的光学照片;(b)hBN薄膜的SEM图;(c)S掺杂hBN薄膜的SEM图;(d)XRD图;(e)Raman图;(f)FTIR图
近期,西安交通大学电信学部电子学院李强团队,应用LPCVD系统在蓝宝石衬底进行大尺度hBN单晶薄膜的外延生长和掺杂研究。选用蓝宝石衬底直接外延生长大面积连续的hBN薄膜,通过超高温外延生长(~1400 °C)实现了hBN薄膜的高结晶度,随后应用S元素在hBN薄膜内进行了替位掺杂,成功突破了大面积hBN单晶薄膜的n型掺杂,S掺杂浓度达1.21%(图1)。结合Mg掺杂的p型hBN薄膜,制备了基于hBN材料体系的同质PN结,即hBN:S/hBN:Mg同质结。对构建的同质PN结进行PL测试,通过对结果的分析确定了同质结形成后,光生载流子会在内建电场作用下漂移至空间电荷区内,进而发生辐射复合发光,实现了深紫外光(261nm-300nm)的出射。hBN薄膜掺杂的突破,意味着六方氮化硼可以作为深紫外光电器件的主体材料,为后续半导体型更短波段深紫外发光器件的研制提供了一个新的研究方向。
图2.六方氮化硼同质结构与性能表征;(a) hBN:Mg/hBN:S同质结的结构; (b)能带匹配结构;(c) 同质结的I-V曲线,插图为实物照片;(d) hBN:S薄膜和hBN:Mg/hBN:S同质结的光致发光光谱;(e)同质结的PL发光过程原理示意图。
该研究成果以“Deep-UV Light-Emitting Based on the hBN:S/hBN:Mg Homojunction”为题发表在国际权威期刊《先进科学》(Advanced Science)上,西安交通大学为第一通讯单位。西安交通大学博士生陈冉升和青年教师李强为共同第一作者。西安交通大学李强副教授、中科院半导体所郭亚楠研究员、英国卡迪夫大学Tao Wang教授、西安电子科技大学郝跃院士为共同通讯作者。同时,感谢西安交通大学分析测试共享中心对本工作表征方面的支持。
李强课题组一直致力于六方氮化硼材料的外延生长与深紫外光电器件的研究,近期工作在Advanced Functional Materials, ACS Applied Materials & Interfaces, Applied Surface Science、Crystal Growth & Design等最具影响力期刊上发表了一系列文章。
-
2025-05-12 08:56:48
在如今小型化、集成化电子设备和元器件的输出功率越来越大,散热需求越来越大的情况下,六方氮化硼(h-BN)由于其中的硼(B)和氮(N)之间通过强的平面…
-
2025-05-05 09:59:41
氮化硼材料的高导热+强绝缘,完美适配5G射频芯片、新能源电池、半导体封装等高功率场景,是高性能绝缘导热材料的首选,为高功率电子设备热管理提供新的…
-
2025-04-29 08:07:16
高分子聚合物材料具有易加工成型、低密度、耐腐蚀、耐热性、低介电常数及优异的力学性能,使其广泛应用到电子设备、航空航天等领域。其中,大部分高分子…
-
2025-04-21 08:36:03
全文速览六方氮化硼(hBN)因其含有多种室温下存在的高亮度单光子而备受关注。然而,由于发射光谱的不确定性以及缺乏关于原子缺陷结构的信息,对于探索…
-
2025-04-14 08:41:20
美国范德堡大学Piran R. Kidambi发表了题为“Scalable Bottom-Up Synthesis of Nanoporous Hexagonal Boron Nitride (h‑BN) for Large-Area Atomicall…
-
2025-04-06 10:11:54
应对空气污染与全球变暖,已成为全球关注的焦点。解决这一问题,关键在于控制传统化石能源的使用,并积极开发可再生的清洁能源。太阳能、水能、风能及地…