欢迎访问 纳朴材料 官方网站!
联系我们:18970647474
当前位置:首页 > 新闻中心 > 技术文章
新闻中心
news Center
联系我们
Contact Us

苏州纳朴材料科技有限公司

联系人:

李女士

Contact:

Ms. Li

手机:

18970647474(同微信)

Mobile Phone:

+86-18970647474
(WeChat ID)

邮箱:

2497636860@qq.com

E-mail:

2497636860@qq.com

办公室地址:

苏州市相城区聚茂街185号D栋11层1102

Office Address:

D-1102, 185, Jumao Street, Xiangcheng, Suzhou, Jiansu, China

A工厂地址:

江西省永丰县桥南工业园

Plant A Address:

Qiaonan Industrial Park, Yongfeng 331500, Jiangxi, China

B工厂地址:

江西省吉安市井冈山经济技术开发区

Plant B Address:

Jinggangshan Economic Development Zone, Ji' an 343000, Jiangxi, China

具有高导热性和界面适应性的可回收BN/环氧热界面材料

信息来源:本站 | 发布日期: 2023-06-30 13:50:33 | 浏览量:229366

摘要:

1 背景介绍随着电子器件向小型化、集成化、大功率密化的方向发展,对高效散热技术的需求日益迫切。热界面材料(TIMs)通过连接热源和散热器,可以有效避免过热和设备损坏。最新的TIM不仅要求高热流密度以适应轻量化趋势,而且要求可回收性以缓解电子垃圾带来的环境压力。然…

背景介绍

随着电子器件向小型化、集成化、大功率密化的方向发展,对高效散热技术的需求日益迫切。热界面材料(TIMs)通过连接热源和散热器,可以有效避免过热和设备损坏。最新的TIM不仅要求高热流密度以适应轻量化趋势,而且要求可回收性以缓解电子垃圾带来的环境压力。然而,制备既具有高散热性能又具有可回收性的TIM仍然是一个巨大的挑战。

含有导热填料的聚合物复合材料是高性能TIM的可行候选材料。其中氮化硼(BN)填料因其优异的各向异性热输运、介电性能、热稳定性和机械强度而受到广泛关注。先进的BN/聚合物复合材料主要旨在通过相互接触、连续相、规则取向或单向组装来获得更高的导热性。然而,这些方法不仅涉及复杂的工艺,而且对粗糙表面的顺应性仍未得到解决。

迄今为止,人们已经探索了多种策略,包括构建夹层结构,降低模量,设计微/纳米流体,以及使用热塑性基质,以赋予TIM具有适应性界面。由于热塑性材料的弹性变形,在热塑性复合材料中,通过叶片涂布、静电纺丝、热压、拉伸等方法可以很容易地获得填料的界面柔度和取向。然而,热塑性塑料相对较低的力学性能和较高的热应力不利于其长期使用。最近,热固性树脂具有低介电常数和优异的热性能和力学性能,被认为是TIM的理想基材,但其不溶性和不溶性使其难以符合TIM的粗糙表面,难以回收利用。


成果掠影

近期,中国科学院宁波材料技术与工程研究所的代金月老师针对开发高导热以及具有可回收性的TIM取得新进展。本研究采用热压诱导取向法制备了具有各向异性导热性和可回收性的高性能BN/环氧复合材料,并且具有表面相容性的完全可回收的TIM。结果表明,仅通过简单的热压处理,填充的BN就可以很容易地在平面上取向,导热系数为3.85 W/(mK),BN含量为40 wt %,比原始环氧树脂高30倍,比热压处理前的复合材料高4.3倍。由于优越的导热性和机械顺应性,由所制备的复合材料制成的电子器件的核心温度比商用硅酮材料低20℃。此外,得益于所合成的环氧玻璃体的多级降解机制,所制备的复合材料可以在温和的条件下进行高效的化学回收,BN回收率为96.2%,其他有机原料的回收率为73.6% ~ 82.4%。这项工作为我们设计可回收和高性能的TIMs提供了一种新的策略。研究成果以“A Full-component recyclable Epoxy/BN thermal interface material with anisotropy high thermal conductivity and interface adaptability ”为题发表于《Chemical Engineering Journal》。

相关文章 (related information)
相关产品 (Related Products)

Copyright 2020 苏州纳朴材料科技有限公司 苏ICP备16022635号-1 版权声明 技术支持:江苏东网科技 [后台管理]
Top